

Fig. 1. A perspective view of the spiroketal with ellipsoids at 50% probability.

Metras, Cottier \& Descotes, 1982). A discussion of the stereochemistry of five-, six- and seven-membered rings using torsion-angle analysis has been given by Toromanoff (1980).

References

Grenier-Loustalot, M. F., Metras, F., Cottier, L. \& Descotes, G. (1982). Spectrosc. Lett. 15, 789-793.
Perron, F. \& Albizati, K. F. (1989). Chem. Rev. 89, 1617-1661.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stolze, D. A., Perron-Sierra, F., Heeg, M. J. \& Albizati, K. F. (1991). Tetrahedron Lett. 32, 4081-4084.

Toromanoff, E. (1980). Tetrahedron, 36, 2809-2931.

Acta Cryst. (1992). C48, 758-760

(\boldsymbol{R})-(1-Methyloxiranyl)methyl 4-Nitrobenzenesulfonate

By Guobin Sun, Frank R. Fronczek and Richard D. Gandour*
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

(Received 17 June 1991; accepted 17 September 1991)

Abstract

C}_{10} \mathrm{H}_{11} \mathrm{NO}_{6} \mathrm{~S}, M_{r}=273.3\), monoclinic, $P 2_{1}$, $a=10.2612$ (8), $b=8.1670$ (8), $c=15.2974$ (12) \AA, β $=108.885(6)^{\circ}, \quad V=1213.0(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.496 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \quad \mu=$ $25.39 \mathrm{~cm}^{-1}, F(000)=568, T=297 \mathrm{~K}, R=0.046$ for 4453 observations having $I>3 \sigma(I)$ (of 4798 unique data). The two independent molecules in the asymmetric unit differ conformationally, principally in torsion angle differences about the two bonds to the CH_{2} group that link the oxirane three-membered ring to the 4 -nitrobenzenesulfonate group. In molecule (A), the C (ring) - $\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle is $-23.0(4)^{\circ}$, while in molecule (B) that torsion angle is $-146.8(3)^{\circ}$. The $\mathrm{S}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angle in molecule (A) is 133.2 (2) ${ }^{\circ}$, while in molecule (B), it is -143.9 (2) ${ }^{\circ}$. The $\mathrm{C}-\mathrm{S}-\mathrm{O}-\mathrm{C}$ torsion angles are -80.9 (2) ${ }^{\circ}$ in molecule (A) and $76.5(2)^{\circ}$ in molecule (B). The molecules pack with a pseudocenter near $\frac{1}{2}, \frac{1}{2}, \frac{3}{4}$ as a pseudoracemate. Only the position of the epoxy O atom greatly deviates from a centrosymmetric motif.

Experimental. Pale yellow prisms of (1), m.p. 313.5314.5 K , were isolated by two successive recrystallizations from ethanol of the crude product prepared by the reaction of $(S)-(-)$-2-methylglycidol with $4-$ nitrobenzenesulfonyl chloride in dichloromethane at 273 K. Crystal size $0.28 \times 0.35 \times 0.45 \mathrm{~mm}$, mounted in capillary in random orientation on an Enraf-

[^0]0108-2701/92/040758-03\$03.00

Nonius CAD-4 diffractometer equipped with a graphite monochromator, $\mathrm{Cu} K \alpha$ radiation. Cell dimensions from setting angles of 25 reflections having $12<\theta<30^{\circ}$. The space group was determined from systematic absences $0 k 0$ with k odd and the known chirality of the compound.

(1)

A hemisphere of data having $4<2 \theta<150^{\circ}, 0 \leq h$ $\leq 12,-10 \leq k \leq 10,-19 \leq l \leq 19$ was measured using $\omega-2 \theta$ scans designed for $I=25 \sigma(I)$, subject to maximum scan time of 90 s , scan rates varied $0.66-3.30^{\circ} \mathrm{min}^{-1}$. Data corrected for background, Lorentz and polarization effects. Intensities of standard reflections $300,020,004$ varied only randomly, and no decay correction was applied. Absorption corrections were based on ψ scans, and relative transmission coefficients ranged from 0.8982 to 0.9975 with an average value of 0.9593 . The extinction coefficient was refined in the least squares to $g=$ $2.9(2) \times 10^{-6}$ where the correction factor $\left(1+g I_{c}\right)^{-1}$ was applied to F_{c}. A total of 5090 data was measured. $R_{\text {int }}=0.020$ for averaging redundant data. The structure was solved by direct methods, using RANTAN (Yao, 1981), and was refined by weighted full-matrix least squares; non-H atoms refined aniso-
© 1992 International Union of Crystallography

Table 1. Coordinates and equivalent isotropic thermal parameters (\AA^{2})
 $\left.+(2 b c \cos \alpha) \beta_{23}\right]$.

	x	y	z	$B_{\text {cq }}$
$\mathrm{S} 1 A$	0.79270 (8)	1	0.58911 (5)	4.54 (2)
O1A	0.9090 (2)	1.0810 (3)	0.6509 (2)	5.60 (6)
O2A	0.7002 (3)	1.0858 (4)	0.5139 (2)	6.27 (6)
O3A	0.8392 (2)	0.8491 (3)	0.5427 (1)	4.68 (5)
O4A	0.3645 (3)	0.6252 (6)	0.7652 (2)	10.8 (1)
O5A	0.5315 (3)	0.6566 (6)	0.8877 (2)	8.9 (1)
O6A	0.8626 (3)	0.5187 (4)	0.4941 (2)	5.86 (6)
$\mathrm{N} 1 A$	0.4789 (3)	0.6718 (4)	0.8055 (2)	5.42 (7)
Cla	0.6980 (3)	0.9083 (4)	0.6542 (2)	3.78 (6)
C2A	0.5643 (3)	0.8595 (5)	0.6101 (2)	4.76 (7)
C3A	0.4917 (3)	0.7816 (5)	0.6593 (2)	5.02 (8)
C4A	0.5551 (3)	0.7567 (4)	0.7521 (2)	4.19 (6)
C5A	0.6885 (3)	0.8061 (5)	0.7980 (2)	4.83 (7)
C6A	0.7607 (3)	0.8817 (5)	0.7482 (2)	4.70 (7)
C7A	0.9593 (3)	0.7545 (4)	0.5968 (2)	4.77 (7)
C8A	0.9281 (3)	0.5757 (4)	0.5865 (2)	4.22 (6)
C9 ${ }^{\text {A }}$	0.7890 (4)	0.5123 (5)	0.5602 (3)	6.14 (9)
C10A	1.0477 (4)	0.4721 (6)	0.6422 (3)	6.6 (1)
S1B	0.22028 (7)	-0.0432 (1)	0.89461 (5)	3.83 (1)
OIB	0.1058 (2)	-0.1184 (3)	0.8281 (2)	4.90 (5)
O2B	0.3070 (2)	-0.1355 (3)	0.9692 (2)	5.26 (5)
O3B	0.1709 (2)	0.1044 (3)	0.9421 (1)	3.94 (4)
O4B	0.6706 (3)	0.3531 (6)	0.7474 (2)	10.07 (9)
O5B	0.5167 (3)	0.3128 (6)	0.6194 (2)	9.1 (1)
O6B	0.0550 (3)	0.4090 (4)	1.0042 (2)	6.17 (6)
N1B	0.5601 (3)	0.3022 (4)	0.7021 (2)	5.32 (7)
Cl B	0.3214 (3)	0.0551 (4)	0.8366 (2)	3.49 (5)
C2B	0.4518 (3)	0.1104 (5)	0.8873 (2)	4.35 (7)
C3B	0.5298 (3)	0.1897 (5)	0.8434 (2)	4.66 (7)
C4B	0.4763 (3)	0.2154 (4)	0.7491 (2)	4.10 (6)
C5B	0.3468 (3)	0.1622 (4)	0.6977 (2)	4.43 (7)
C6B	0.2681 (3)	0.0806 (4)	0.7415 (2)	4.26 (6)
C7B	0.0611 (3)	0.2106 (4)	0.8863 (2)	4.15 (6)
C8B	0.0935 (3)	0.3803 (4)	0.9227 (2)	4.05 (6)
C9B	-0.0221 (4)	0.4858 (5)	0.9182 (3)	5.94 (9)
C10B	0.2297 (4)	0.4476 (5)	0.9269 (3)	5.90 (9)

tropically; H atoms located by ΔF and refined isotropically.

The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and weights were assigned as $w=4 F_{o}^{2} \mathrm{Lp}\left[S^{2}\left(C+R^{2} B\right)+\right.$ $\left.\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$, where $S=$ scan rate, $C=$ total integrated peak count, $R=$ scan time/background counting time, $B=$ total background count, $\mathrm{Lp}=$ Lorentz-polarization factor, using Enraf-Nonius SDP (Frenz \& Okaya, 1980), scattering factors of Cromer \& Waber (1974), anomalous coefficients of Cromer (1974). Of 4798 unique data, 4453 reflections having $I>3 \sigma(I)$ were used in the refinement. Final $R=0.046(0.050$ for all data), $w R=0.064, S=3.438$ for 413 variables. Maximum shift 0.10σ in the final cycle; maximum residual density 0.38 , minimum $-0.32 \mathrm{e} \AA^{-3}$. The mirror-image (S)-isomer was refined under identical conditions, yielding $R=$ $0.056, w R=0.080, S=4.307$, thus the (R)-isomer is confirmed. Table 1 presents the final coordinates*

[^1]Table 2. Bond distances (\AA), angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$ for molecules (A) and (B)

	(A)	(B)
$\mathrm{S} 1-\mathrm{Ol}$	1.423 (2)	1.421 (2)
$\mathrm{S} 1-\mathrm{O} 2$	1.418 (2)	1.415 (2)
$\mathrm{Sl}-\mathrm{O} 3$	1.572 (3)	1.573 (2)
$\mathrm{Sl}-\mathrm{Cl}$	1.766 (3)	1.762 (3)
O3-C7	1.462 (4)	1.458 (3)
$\mathrm{O} 4-\mathrm{Nl}$	1.198 (4)	1.196 (4)
$\mathrm{O} 5-\mathrm{N} 1$	1.203 (4)	1.200 (4)
O6-C8	1.432 (4)	1.443 (4)
O6-C9	1.445 (6)	1.441 (4)
N1-C4	1.474 (5)	1.470 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.378 (4)	1.388 (4)
$\mathrm{C} 1-\mathrm{C} 6$	1.390 (4)	1.394 (4)
C2-C3	1.374 (5)	1.364 (5)
C3-C4	1.371 (4)	1.382 (4)
C4-C5	1.381 (4)	1.377 (4)
C5-C6	1.370 (5)	1.376 (5)
C7-C8	1.492 (5)	1.491 (5)
C8-C9	1.447 (5)	1.449 (5)
C8-C10	1.507 (5)	1.484 (5)
$\mathrm{OL}-\mathrm{Sl}-\mathrm{O} 2$	120.4 (1)	120.4 (1)
$\mathrm{O} 1-\mathrm{Si}-\mathrm{O} 3$	110.6 (1)	110.3 (1)
$\mathrm{Ol}-\mathrm{Sl}-\mathrm{Cl}$	108.6 (1)	108.7 (1)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	104.0 (1)	104.4 (1)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{Cl}$	108.8 (2)	109.3 (1)
$\mathrm{O} 3-\mathrm{Sl}-\mathrm{Cl}$	103.0 (1)	102.3 (1)
$\mathrm{Sl}-\mathrm{O} 3-\mathrm{C} 7$	118.8 (2)	119.3 (2)
C8-O6-C9	60.4 (2)	60.3 (2)
$\mathrm{O} 4-\mathrm{Nl}-\mathrm{O} 5$	122.6 (4)	123.0 (4)
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 4$	118.1 (3)	118.6 (3)
O5-N1-C4	119.2 (3)	118.4 (3)
$\mathrm{S} 1-\mathrm{Cl}-\mathrm{C} 2$	119.3 (2)	119.0 (2)
S1-C1-C6	119.7 (2)	119.9 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	120.9 (3)	121.1 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	119.8 (3)	119.5 (3)
C2-C3-C4	118.4 (3)	119.2 (3)
N1-C4-C3	119.0 (3)	119.1 (2)
N1-C4-C5	118.1 (3)	118.8 (3)
C3-C4-C5	122.9 (3)	122.2 (3)
C4-C5-C6	118.3 (3)	118.9 (3)
C1-C6-C5	119.6 (3)	119.1 (2)
O3-C7-C8	110.2 (2)	107.3 (2)
O6-C8-C7	116.0 (3)	112.6 (3)
O6-C8-C9	60.2 (2)	59.8 (2)
O6-C8- Cl 10	114.3 (3)	114.8 (3)
C7-C8-C9	122.5 (3)	117.1 (3)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 0$	112.5 (3)	117.0 (3)
C9-C8-C10	120.4 (3)	121.8 (3)
O6-C9-C8	59.4 (2)	59.9 (2)
$\mathrm{Cl}-\mathrm{S} 1-\mathrm{O} 3-\mathrm{C} 7$	-80.9 (2)	76.3 (2)
$\mathrm{O} 3-\mathrm{Sl}-\mathrm{C} 1-\mathrm{C} 2$	-79.3 (3)	75.4 (3)
$\mathrm{SI}-\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	133.2 (2)	-143.9 (2)
$\mathrm{O} 4-\mathrm{Nl}-\mathrm{C} 4-\mathrm{C} 3$	1.2 (5)	-2.5 (5)
$\mathrm{O} 5-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	- 176.4 (4)	174.4 (4)
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 6$	46.8 (4)	-80.4 (3)
O3-C7-C8-C9	-23.0 (4)	-146.8(3)
O3-C7-C8-Cl0	-179.0 (3)	55.8 (4)

and equivalent isotropic thermal parameters, and Table 2 presents bond distances, angles and selected torsion angles. Fig. 1 illustrates the two independent molecules and the numbering scheme, and Fig. 2 shows the unit cell.

Related literature. Structure of p-nitrophenylsulfonic acid-(7-exo-isopropenylbicyclo[4.1.0]hept-7-endo-yl) ester: Seebach, Dammann, Lindner \& Kitschke (1979). Preparation of glycidyl arenesulfonate: Klunder, Onami \& Sharpless (1989).

The National Institutes of Health supported this work through grant GM42016.

Fig. 1. Numbering scheme and thermal ellipsoids drawn at the 40% probability level for the two independent molecules. H atoms are drawn as circles of arbitrary radius.

Fig. 2. Stereoview of the unit cell, illustrating the pseudoracemic nature of the packing.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Klunder, J. M., Onami, T. \& Sharpless, K. B. (1989). J. Org. Chem. 54, 1295-1304.
Seebach, D., Dammann, R., Lindner, H. J. \& Kitschke, B. (1979). Helv. Chim. Acta, 62, 1143-1161.

Yao, J.-X. (1981). Acta Cryst. A37, 642-644.

Structure of 1-Acetylindole-2,3-dione

By J. Zukerman-Schpector and E. E. Castellano

Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560 São Carlos, SP, Brazil

and Angelo Da C. Pinto, J. F. M. da Silva and M. T. F. C. Barcellos

Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitária 21910, Rio de Janeiro, RJ, Brazil
(Received 17 May 1991; accepted 12 June 1991)

Abstract. $\quad \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{3}, \quad M_{r}=189 \cdot 17$, monoclinic, $P 2_{1} / n, a=8.892$ (2), $b=5.108$ (2), $c=18.573$ (3) \AA, $\beta=98.22(2)^{\circ}, \quad V=834.8(7) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.505 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $1.06 \mathrm{~cm}^{-1}, F(000)=392, T=298 \mathrm{~K}, R=0.038$ for 1488 observed reflections. The heterocyclic ring is essentially planar making a dihedral angle of 7.9 (6) ${ }^{\circ}$ with the acetyl moiety. The $\mathrm{C}(2)-\mathrm{C}(3)$ distance is 1.538 (2) Å.

Experimental. Crystals of the title compound were obtained from acetic anhydride at 298 K . The data collection and refinement parameters are summarized in Table 1.

The structure was solved using standard direct methods and difference Fourier techniques. In final cycles of full-matrix least-squares refinement all non- H atoms were treated anisotropically, the H atoms were refined isotropically.

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Tables of H -atom coordinates, bond distances and angles involving H atoms, torsion angles, anisotropic thermal parameters, least-squares planes, and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54657 (33 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST0535]

